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I.,

THE SOLAR WIND-MAGNETOSPHERE-IONOSPHERE 'p

CURRENT-VOLTAGE RELATIONSHIP %

I. INTRODUCTION

Hagnetospheric convection, electric fields, and Birkeland currents

have been an area of intensive research over the past 20 years. Recent

reviews with reference to many of the earlier papers include the monograph

edited by Potemra [1984] and papers by Hill [19831, Wolf [19831, Burch and

Heelis [19801, and Potemra et al. [19801. The intense interest in this

area is motivated largely by a desire to understand the interactions of

the SW-M-I system and to be able to predict its effects on near-earth

space and man-made systems operating in this region. Impirical studies of

the coupling function of the SW-H-I system include Burton et al. [19751,

Perreault and Akasofu (19781, and Reiff et  al. (19811, which relate the

power input to the magnetosphere to solar wind conditions. All these

studies indicate that the dynamo power is sensitively controlled by the

interplanetary magnetic field, IMF. Stern [1978, 19841 has convincingly

argued for a primary dynamo in the magnetopause-magnetosheath region and

operating on magnetic field lines open to the solar wind. On the other "p

hand, Heikkila [19841 and others have studied the operation of a dynamo in

the magnetospheric boundary layer operating on closed field lines. The

results presented here strongly support the Stern model for southward IMF

conditions.

A number of previous studies of the high latitude current voltage

relationship have been reported. A study by Robinson [19841 using

Incoherent scatter radar data discovered a linear relationship between the

polar cap potential and ionospheric Pedersen currents. Fujii et al.

[19811 and Fujii and Iijima 119871 studied the seasonal Birkeland current V

intensity and discovered that larger currents were coincident with higher

ionospheric conductivity. For smaller scale structures, Vickrey et al.

11986), using Dynamics Explorer satellite data, and Lysak [1985J, using a

theoretical and simulation study, present results which indicate that the

magnetosphere dynamo behaves like a current source.

In this paper we report results for the global current-voltage

relationship for the SW-M-I system. Since this study is restricted to

strong southward IMF, the dynamo which we identify is located on open

field lines. We discuss how the dynamo is controlled by ionospheric

Manuscript approved April 8, 1987.
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conductivity and in the earth's SW-M-I system operates, under normal

conditions, very close to short circuit and at a fraction of the power

output which is available. Finally, we discuss the implications of these

results for the SW-M-I system: the relationship between open and closed

field dynamos, the effect of solar wind conditions, the control of

reconnection on the bow, the size of the open field line region, the

effects of increased auroral conductivity, and the efficiency of coupling

to the solar wind.

II. NUMERICAL MODEL

The simulations are based on the ideal MHD equations which are used

to describe the solar wind and the outer (beyond 3.5 Re) magnetosphere.

They are given as follows.

Continuity:

+ V • (pv) = 0 (1)at-

Momentum balance:

p + p (v V)v + Vp = x B (2)

Energy balance:

a V-(c + p)v + "E (3)at - -

Faraday's Law:

3 - V xE (4)
at

Ampere's Law:

=V x B (5)
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Ohm's Law:

E + v x B =0 , (6)

where the symbols have their common usage. For the magnetospheric-solar

wind region of interest the major error in these equations is the neglect

of the so-called Hall term, m/peQ x B), on the right hand side of (6)

[Siscoe, 1982]. These equations are solved as an initial value problem to

a quasi steady state for a given solar wind condition.

Our recent simulations have included a number of innovations. First,

the development of a fully-nonlinear, high-accuracy algorithm for solution

of the MHD equations [Lyon, 19871. Second, the use of a spider web

numerical grid which is rotated around the sun-earth axis to provide a 3-

dimensional cylindrical mesh which gives high resolution in important

regions (i.e., the dayside magnetopause, the polar open field line

region). Third, the inclusion of a model for the conducting ionosphere,

which provides a physical inner boundary to the MHD system. Specifically,

the ionosphere is modeled electrostatically,

7 - EZ = J (7)

The parallel current density, J,, is calculated at the inner boundary (3.5

RE geocentric radius) of the MHD mesh. It is mapped along dipole field

lines to the ionosphere where the electric field, E, is computed using a

conductivity model for the ionosphere. The electric field is then mapped

outward to the inner boundary where it is used as a boundary condition for

both the momentum balance equation and for Faraday's Law. The system of

equations (1) thru (7) form a closed set with the conductivity, £,

provided. They also constitute a realistic, restricted physical model for

magnetosphere-ionosphere coupling. The main effects ignored are the

Alfven propagation time from 3.5 R to the ionosphere, the possiblee
existence of field aligned potentials, and the enhancements to

conductivity created by precipitating auroral particles.

For the results presented here we have used steady solar wind
-3 -1

conditions with density, n = 5 cm , velocity, V = 400 km sec

temperature, T = 10 ev, and IMF, B = 5 nT southward. We have also used



uniform ionospheric conductivities for two reasons: first, the lack of an

auroral enhancement model coupled to the MHD; and second, to simplify

the interpretation of the results and the identification of dynamo

regions, since spatially varying conductivities can lead to polarization

and considerable complication of both the current systems and the source

dynamos.

III. RESULTS

The results clearly demonstrate the observed morphology of the polar

currents and electric fields. Figure 1 is presented as an example showing

the polar field aligned currents on the left and the electric potential on

the right. Clearly seen are the Region 1 and Region 2 Birkeland current

systems on the left as well as the anti-sunward convection over the polar

cap and the sunward convection at equatorward latitudes on the right. It

is noteworthy that the current densities, total current, electric field,

and total potential are all within observed limits, even though the

assumed ionospheric conductance of 2.5 mhos is somewhat low for the solar

wind conditions. It is also interesting to note the pair of currents

flowing opposite to the Region 2 system at the lowest latitudes near 0800

and 1600. These are computational artifacts since the 3.5 Re inner

boundary of the model is not a natural drift surface for ring current

plasma. In addition to the currents shown above, the model clearly

reproduces the Svalgaard-Mansurov effect [Friis-Christensen, 19841 for

East-West IMF conditions, and the NBZ currents [Iijima, 19841 for

northward IMF. Superficially at least, the simulation model appears to

behave in a manner similar to the SW-M-I system. To further investigate

the simulation model and the physical mechanisms operative, it is

necessary to adjust available parameters such as the solar wind or the

ionosphere.

For this study we adjusted the ionospheric conductivity choosing

conductance values of 0.1, 1.25, 2.5 and 5.0 mhos. Figure 2 shows the

current-voltage (I-V) relationship (solid line) and the power delivered by

the generator (dashed line). The voltage axis marks the total cross polar

cap potential while the current axis is the total current in the Region 1

Birkeland current system which flows through the dynamo.

4
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Three features of the I-V curve are striking: the first is the near

perfect linearity of the I-V curve, the second is that the physical

operating regime of the SW-M-I system is very near the horizontal axis
(short circuit current), and the third is that the dynamo does not look

like either an intrinsic voltage source (a horizontal line) or an

intrinsic current source (a vertical line). The power curve was derived

as the product of the current and voltage. It shows an approach to a

maximum for an ionospheric conductance below 0.1 mho and also demonstrates

that the SW-M-I system is operating at a fraction of the available power

because of the high conductance of the ionosphere.

The final result, shown in Fig. 3, is a sketch of the coupling

currents, magnetic field, and electric fields for the SW-M-I system

projected onto a solar magnetospheric y-z coordinate plane. The Region 1

Birkeland currents toward (away from) the earth on the dawn (dusk) side of

the magnetosphere at high latitudes are immediately adjacent to the open-

closed field line boundary. As the Region 1 currents reach the

magnetopause they bend tailward along the tail-like magnetic field and

eventually close perpendicular to the magnetic field through a dynamo

region in the polar tail magnetopause-magnetosheath. A small portion of

the Region 1 current also closes through a dynamo region in the low

latitude boundary layer; however, these currents are in series with the

high latitude dynamo which dominates the electromagnetic induction.

The Region 2 currents as they approach the equatorial plane close

perpendicular to the magnetic field tailward to the near-earth plasma

sheet. Here the electromagnetic forces work as a motor or pump driving

the near earth plasma sheet plasma sunward.

IV. DISCUSSION AND CONCLUSIONS

The results described above have allowed us to begin to understand in

detail the SW-M-I coupling and dynamo system for southward IMF, how it is

controlled by the solar wind, and modifications caused by the ionosphere

conductivity. We consider first the I-V diagram (Fig. 2). The I-V curve

shown is for a single solar wind condition. As the solar wind conditions

change, the curve shifts either to the left or the right without

materially changing shape. Increasing (decreasing) either the solar wind
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velocity or southward IMF causes the curve to shift roughly perpendicular

to itself towards the right (left), increasing (decreasing) the power

delivered by the dynamo.

The dynamo mechanism can be understood by consideration of the plasma

momentum equation (2) [Vasyliunas, 19841. In the absence of Maxwell

stresses applied by a conducting ionosphere and the coupling currents, 1 x

B= 0; the solar wind flow along the magnetopause and in the nearby

magnetosheath is purely hydrodynamic. However, we may consider that two

equal and opposite pseudo-currents flow in the plasma; a pressure driven
2 2current, Vp x B/B , and a polarization-like current, p/B (v V) v x B.

The pressure driven current is directed opposite to the motional electric

field, E = - v x B. When a load is added to the system by the ionosphere
and the coupling currents, the polarization-like current is reduced and
the difference between the pressure driven and the polarization-like

currents provides a MHD dynamo mechanism through the Maxwell stresses.

The role of the ionospheric conductivity is to regulate the power

delivered by this dynamo through the coupling currents. It does this in

two distinct ways. First, it controls the reconnection rate between the

IMF and the geomagnetic field on the nose of the magnetosphere by
regulating the length of the bow reconnection line, thereby controlling

the amount of open magnetic flux in the polar magnetosphere, which has

been clearly seen in the results. Second, by regulating the strength of

the Region 1 Birkeland currents, it broadens or narrows the "window"

[Stern, 19761 in the polar magnetopause for open polar magnetic flux as it

passes into the magnetosheath. This narrowing of the window through the

magnetopause is clearly seen in Fig. 3 where the sunward and anti-sunward

Region 1 Birkeland currents along the polar magnetopause cause a distinct

cusp formation in the field lines as they pass through the current sheet.

This cusp-like topology for field lines passing through the polar

magnetopause is consistent with recent modeling results of Siscoe and

Sanchez [1987].

The regulation of the SW-M-I dynamo by the ionospheric conductance on

a global scale is very effective. It forces the system to operate near

short circuit current on the I-V curve and limits the power extracted from

the solar wind to a fraction of that which is available. This behavior is

6



not necessarily the same for other planetary magnetospheres. In

particular, for Mercury, where the load is the surface rock conductance of

approximately 0.1 mhos, the power conversion should be much more efficient

as has been inferred from measurements [Russell et al., 19861. S'

The results clearly show that the amount of open magnetic flux is

controlled by the ionospheric conductivity and the complete SW-M-I

coupling system. This strongly implies that, in the simulation model, the

magnetic reconnection rate on the nose of the magnetosphere is also

controlled by the conductivity and the SW-M-I system and not by any

numerical effects. We would suggest that in the magnetosphere a similar

control is effective for dayside reconnection, and it is not controlled by

resistivity or diffusion or any plasma microphysical effect local to the

reconnection region.

The results presented here are consistent with the previous studies

of Robinson 11984], Fujii et al. [19811, and Fujii and Iijima [1987J. The

Robinson relation between voltage and current corresponding to the left

(right) shifts of the I-V curve depending on solar wind conditions, and

the Fujii relationship between conductivity and current corresponding to

the shifts along the I-V curve caused by conductance changes. The

behavior of the dynamo as a current generator at small spatial scales

[Vickrey et al., 1986] and at short temporal scales [Lysak, 1985] can be

explained by tests we performed using localized enhancements to the polar

ionosphere conductance. In these tests the localized enhancements

polarized in such a fashion as to keep the ionosphere currents constant;

the global coupling of the SW-M-I system remained essentially unaltered.

The results and conclusions presented here apply for solar wind

conditions with a strong southward component of the IMF. The limited role

of the low latitude boundary layer in dynamo activity clearly may not

apply for northward IMF as we have already seen in other simulation

results not presented here. However, the state of the SW-M-I system under

northward IMF is much more complicated than the relatively straightforward

results presented here and requires more analysis.

It is also essential that future work link the auroral conductivity

to the magnetospheric dynamics. There exists a strong possibility that

the SW-M-I system is self-regulating. That is to say, that an increase in

7
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the power from the solar wind can lead to an increase in ionospheric

auroral conductivity which in turn reduces the coupling efficiency to the

solar wind. The auroral conductivity is also expected to play a strong

role in substorm activity through the closure of Region 2 currents in the

near earth plasma sheet. Here an increased auroral conductivity can lead

to increased Region 2 currents which inject the near earth plasma sheet

towards the earth and reduce the northward component of the geomagnetic

field near the center of the plasma sheet. This type of behavior suggests

an ionospheric substorm trigger for formation of a near earth reconnection

region and ring current injection.

Clearly much work remains to be done. We hope to report on the

nature of the SW-M-I coupling and dynamo processes for northward IMF in

the near future. The link between auroral conductivity and magnetospheric

dynamics will require further code development.
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Figure 1. The field-aligned currents (amp m- 2) on the left and electric

potential (volts) on the right as a function of magnetic latitude, 60*-

900, and solar hour angle. For currents, the solid (dashed) contours

indicate out of (into) the ionosphere; and for voltage, solid (dashed)

contours indicate positive (negative) potential. The current contours

show the Region 1 system between 700 and 800 magnetic latitudes and the

Region 2 currents at lower latitude. The potential contours show the

anti-sunward plasma convection above about 750 latitude and sunward

convection at lower latitudes.
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Figure 2. The SW-M-I current-voltage relation (solid curve) and the power

relation (dashed curve) for a variable ionospheric conductance. The data

points indicated on the-curves are for uniform conductances of 0.1, 1.25,

2.5, 5.0 mhos left to right, respectively. Over this range of conductance I %

the I-V curve is almost perfectly linear whereas the power curve

approaches a maximum at the lowest conductance. Since the average

effective conductance of the polar regions is about 5 mhos and possibly

considerably more during active times, the curves indicate that the SW-M-I

dynamo operates near short circuit current conditions; and therefore, the

system inefficiently converts the power available in the solar wind.
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Figure 3. A sketch of the high latitude magnetic field lines, currents,

and electric fields observed in the simulation results projected onto a

solar-magnetospheric y-z coordinate plane and vieved looking sunward. The

Region 1 currents are centered on the last closed field line and connect

to the magnetopause where they flow tailvard (sunward) at dusk (dawn)

before closing perpendicular to the field through the polar dynamo region

in the magnetopause-magnetosheath. The Region 2 currents are at lover

latitudes closing through the magnetospheric equatorial region sunward

(tailvard) at dusk (dawn) and duskward through the near-earth plasma

sheet. The primary dynamo is on open polar field lines for southward IMF,

but there is also a secondary dynamo in the low latitude boundary layer

for the Region 1 current on closed field lines which is in series with the

polar dynamo.
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